www.econstor.eu Bayesian semiparametric additive quantile regression
نویسندگان
چکیده
منابع مشابه
Bayesian semiparametric additive quantile regression
Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation relies on assuming the asymmetric Laplace distribution as auxiliary error distribution that yields po...
متن کاملBayesian inference for structured additive quantile regression models
Most quantile regression problems in practice require flexible semiparametric forms of the predictor for modeling the dependence of responses on covariates. Furthermore, it is often necessary to add random effects accounting for overdispersion caused by unobserved heterogeneity or for correlation in longitudinal data. We present a unified approach for Bayesian quantile inference via Markov chai...
متن کاملwww.econstor.eu Propriety of Posteriors in Structured Additive Regression Models: Theory and Empirical Evidence
Structured additive regression comprises many semiparametric regression models such as generalized additive (mixed) models, geoadditive models, and hazard regression models within a unified framework. In a Bayesian formulation, nonparametric functions, spatial effects and further model components are specified in terms of multivariate Gaussian priors for high-dimensional vectors of regression c...
متن کاملEditorial for the special issue on quantile regression and semiparametric methods
Quantile regression and other semiparametric models have been widely recognized as important data analysis tools in statistics and econometrics. Thesemethods donot rely strictly onparametric likelihoodbut avoid the curse of dimensionality associated with many nonparametric models. The journal Computational Statistics and Data Analysis regularly publishes papers on these semiparametric methods, ...
متن کاملJoint Quantile Regression through Bayesian Semiparametrics
We introduce a Bayesian semiparametric methodology for joint quantile regression with linearity and piecewise linearity constraints. We develop a probability model for all quantile curves in a continuum that define a coherent sampling distribution of the response variable. We provide a detailed illustration of model fitting and inference by analyzing wind speed trends of tropical cyclones in th...
متن کامل